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COLLATZ BQUNDS AND THE COLLOCATION METHOD

4;&/’9

Abstract
A systematic method is devised to obtain precise bounds in special égﬁénvalue
problems. The method has the advantage that only differentiation is involved
in the process once suitable trial functions are obtained., Compared with other
bounding techniques in which extensive integrations are necessary, this method
appears to have: the advantage in simplicity. In application the method is
ideally suited to the use of large-scale computers. Two illustrative problems
are solved in order to demonstrate the capabilities of the technique,
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Introduction

In many eigenvalue problems, the exact solution is very difficult to obtain
and we must be content with approximate solutions. If the problem belongs to the
class of special eigenvalue problems, it is well-known that Collatz bounds can be
obtained very simply, but these bounds usually have such a wide spread that an
accurate estimate of the exact result cannot be made. This paper suggests a
method which enables a systematic improvement of the bounds with a minimm
number of trial functions,



Theory
PRPGSRSEEEE Y

In an eigenvalue problem it is required to find one or more constants 2
generally called eigenvalues, and corresponding functions ¢ , usually called
eigenfunctions, such that a differential equation

M [¥] = AN [¥) (1)

is satisfied throughout a domain D subject to certain boundary conditions on
the boundary of D, In general, the domain D may be either a one- or a two-
dimensional continuum, For many eigenvalue problems M and N in Eq. (1) are
both linear, homogeneous, self-adjoint, positive-definite, differential
operators with the order of M greater than that of N, Under these conditions
the eigenvalues are real and positive and the eigenfunctions form an
orthogonal set.

When the eigenvalue does not appear in the boundary conditions, a
continuous eigenvalue problem is called special provided that the operator
N has the form

Nvl=gv

where g is a prescribed continuous function which is positive throughout
the domain D, Thus, the governing differential equation for special
eigenvalue problems becomes

Misl=2rgvy (2)

Many practical problems fall within the scope of the class of special
eigenvalue problems. In particular we mention normal mode vibration
problems. The development of this paper is applicable to special eigen-
value problems only.



Collatz1 has devised an enclosure theorem applicable to special eigen-
value problems, In the formulation of the Collatz bounds a trial function
v is selected such that the prescribed boundary conditions are identically
satisfied. A function L is then defined in terms of v as follow:

g Vv

If v is an eigenfimction ¥is then L defines a family of constants Ajo If
v is not an eigenfunction, then L varies throughout the domain D but the set
of values taken by L possesses the following enclosure property:

If Lmax and Lmin are the upper and lower bounds for L within the domain
D, then there always exists at least one eigenvalue Ay such that

I‘min\-<' AoS hpax )

The separation of the bounds depends solely on the selection of the trial
function v, If v is arbitrarily selected, the bounds will generally have
such a wide separation that very little information on the exact eigenvalue
A 1s revealed, It is, therefore, highly desirable to develop a systematic
procedure for improving the trial function v so that precise* bounds can be
obtained,

The obvious way to accomplish this purpose is to select a trial function
of the form

V=Vt (5)

where oA and v both satisfy the boundary conditions and are functionally
independent of each other. Substituting this new trial function into Eq. (3)

and otherwise following the same procedure will, in general, lead to somewhat
better bounds. In principle, the bounds can be improved to any desired

precision through the inclusion in v of additional independent trial functions Vyo

1 L. Collatz, "Eigenvertaufgaben mit technischen Anwendung"

Akademische Verlagsgesellschaft M, G. H., Leipzig (1949) p. 126
* The term "'precise bounds'" is herein used to infer that the separation
of the bounds is small




In the meantime, the algebra becomes increasingly tedious.
Equation (5) can be generalized by inserting coefficients Co and c, to
obtain

v=c°(vo+alv1); alacl/co 6)

Upon substitution of the above expression into Eq. (3) we note that o
cancels out. This is natural enough since, in eigenvalue problems,
the mode shape is determinate to within a constant coefficient only.,
Henceforth, we set Co = 1 without loss of generality., We now have

L= L(x,al)

Herein, we have used only a single spatial variable x but it should be
understood that we can use two spatial variables if desired, By treating
a; as a parameter, we can obtain an infinite family of bounds. From
this family we can select the highest lower bound and the lowest upper
bound which may not correspond to the same X and 3 i.e.,

L

I £ s max ) @)

min
X‘Xl X’XZ

a;=k, a;%k,

These bomd§ are generally more precise than those obtained without using
the parameter aj. |

To carry this procedure still further, we can let the trial function
have the form

v=vo+gapvp (8)

p=1

so that we have P parameters at our disposal. In principle, we can obtain




the bounds by letting the a b be any real numbers., This procedure is
unwieldy and inefficient, In order to realize an improvement we require
certain functional relations among the parameters a_ . Among the various
methods available to achieve this goal, the collocation method is, perhaps,
the simplest. In this method we require that the trial function v given
by Eq. (8) satisfy Eq. (2) at P points in the domain D; i.e.,

{M V] -8gvlm =0, (i=1,2,3,c000,P) (9
1

wherein we have replaced A with g since satisfaction of Eq. (2) by v at
discrete points X=X does not yield the exact eigenvalue A . Solving
Eqs. (7) for ap results in

a, =3, (8) (10)

Now, all the coefficients a o are related by a single parameter g and we
obtain the following bounds:

L. sxs L (11)
min max x=x2

X=X1
B=8; =8,

We observe that Eqs. (9) and (10) guarantee the satisfaction of Eq. (2)
approximately in the sense that it is satisfied at P discrete points
instead of at a generic point, We expect that the bounds obtained in
this mammer will be more precise than by other means presently available,




The Vibrating String

Perhaps the simplest of all normal mode vibration problems is that
of the vibrating string. The exact eigenvalues are known to be nzﬂz, n=1,2,.000
We present the solution of this problem in order to demonstrate the merit
of the method devised in the previous section., The governing differential
equation in this case is

2

[~ 1
<

= A9 (12a)

")

X

subject to the following boundary conditions:

wherein the string is taken to be of unit length., Clearly, this is a
special eigenvalue problem with

dZ

“‘Ex-f[w]

MI[.]

Thus, we can calculate the Collatz bounds, First, we take

V=X=‘X2

which satisfies the boundary conditions given by Eqs. (12b).,
Substitution into Eq. (3) results in




The denominator above must always be positive since 0< X< 1 so L approaches
+ = as x approaches 0 or 1. Additionally, by symmetry, L has a stationary
value, which must be a minimum, at x = 1/2, Thus, the largest and smallest
values of L occur at x=0 and x=1/2 and, consequently, the Collatz bounds
are

G

Let us now try
v=(x-x2)+(x-xz)2

Substitution into Eq. (3) results in

. 12
L=

1<"x--x2

Now we observe that as x tends to zero, L approaches 12, Additionally,
L has a minimm at x = 1/2 so that the largest and smallest values of L
occur at x = 0 and x = 1/2, respectively., Thus, we get the following
Collatz bounds in this case

9,6 <A< 12

A

which is a substantial improvement over the previous case. We could
continue in this fashion to obtain further improvement by adding
additional terms to the trial function., Instead we will now make use
of the method developed in the previous section.

Let us take the trial function v in the form given by Eq. (8)
with

v, = (x- 2P 0= 0,1,2,.. ) : (13a)




For one collocation point at x1=1/2, P=1 and Eq. (9) becomes

(dv +8v)| =0 (13b)
ax
x=1/2

Substituting into this condition from Eq. (8) and using Eq. (13a)
results in

4 (B-8)
a, = (13c)
16 -g
Substitution into Eq, (3) from Eqs. (8) and (13c) results in
2 (48-5 g) + 48 ( g-8) (x-x°)
L= 5 > {14a)
(16-8) (x-x¢) + 4 ( p-8)(x-x")
By appropriate limiting processes we obtain the following results:
+w, 0<p<9.6
+ 12, 8=09,6
lim L= (14b)
X+ 0 - o, 9.6<8<16
+ =, g > 16




In the event thatg= 9.6, from Eq. (14a) we obtain
12

We have seen this form of L before and we have the same bounds as
previously derived; i.e.,

9,6 < A

A

12 (14c)

These are completely valid bounds but they are not necessarily the
best bounds possible, We observe from Eq. (14b) that for every
value of B except 9.6, L approaches: « as x tends to zero.
Thus, the other extrema of L must be stationary values of L.

The conditions on the existence of stationary values of L are
given by

9L 3L _

9 X 98

Now, we differentiate Eq, (14a) with respect to x and set the
result equal to zero to obtain

(1-2x) [ (48-58 ) (16-8) + 8(48-58 )(8-8) (x~=x2)+96((s-=8)2(x'=x2 )2]=0

The first term establishes the fact that there is a horizontal
tangent to L at x=1/2 which must occur as a consequence of symmetry,




Thus, we obtain the following condition:
(48-5 8) (16-8 ) + 8(48-58 )(8-8) (x-x2) + 9% ( 8-8)°(x-x)% = 0 (15a)

Now we differentiate Eq. (14a) with respect to g and set the result
equal to zero to obtain

1
X = x5 (5:/5) (15b)

which is valid for allg except g= 48 where 3L/38 is indeterminate,

It is rather interesting to observe that this result is independent
of B; i.e., regardless of the value of g(except for g=48), L is
stationary with respect to g at the same spatial positions. Equation
(15a) establishes the conditions under which L is stationary with
respect to x while Eq. (15b) establishes the spatial position of the
stationary value of L with respect to 8. If both of these conditions
are satisfied simultaneously, we obtain the values of g and x for
‘which L is stationary with respect to both variables simultaneously.
Substitution from Eq. (15b) into Eq. (15a) yields

B = 9,905

Substitution from Eq. (15b) into Eq. (14a) obtains

|
L}

10

10




We see that every L-curve of the family must have a value of 10

at x = (5t v/5)/10 but only when g = 9,905 is L stationary, From
Eq. (14b) we see that for 9.6 <gg 16, L tends to - » as x approaches
0or 1, Thus, the stationary value of L at x = (5 ¢+/5)/10 for g =
9,905 must be a maximum and, consequently, we obtain the following
bounds on the eigenvalue

- < A <10 (16)

From Eqs. (14c) and (16) we finally obtain the following bounds on
the fundamental eigenvalue

9.6 10

A
>
[ 7

We have achieved a modest inprovement in the bounds over those
obtained with the previous trial function.

In order to improve these bounds we proceed to a twd-point
collocation solution., As collocation points we select x = 0
and 1/2, Now, the trial function is given by

v=(x- xz) +a; x = xz)2 *+a, (x - xz)3 (17a)

The collocation conditions are given by

dzv + BV I =
ot ok

X=0

d°v + v = 0
x=1/2

11

(17b)




Substitution into these conditions from Eq, (17a) results in two algebraic

equations which we readily solve to get

4(48-58) @70
B - 24

al=1, a2=

Substituting from Eq. (17a) into Eq, (3) and using Eqs. (17¢) leads to

12 [ (118 - 120) + 10 (48-58 ) (x-x°) ] (17d)

( 8-24) (1+x-x°) + 4(48-58 ) (x-x°)

We must now find the extrema of L with respect to x and 8, We can use
the customary methods of finding extrema, as we have previously done;
however, now the algebra involved becomes excessively complicated

and tedious. A more profitable approach is to make use of a computer

at this point, The general idea of the computer program is to calculate

Loin and L ‘nax corresponding to a given 8, We are led, in the selection

of 8, by the fact that, as the separation of the bounds on the eigenvalue
A becomes smaller, 8 will approach A, Thus, the value of 8 that will

yield the best bounds will lie in the range

9.6 < B £10.0

The procedure is to select several values of 8 in this range and,
corresponding to each value of 8 we calculate bounds on A by means
of the computer program. Finally, from among these bounds we select
the highest lower bound and the lowest upper bound. These two bounds

12




will ordinarily correspond to two different values of B. Following
this procedure for the two-point collocation solution defined by Egs,
(17) we obtained the following bounds:

9.85 < A < 9.87

We see that the total separation of the bounds is only 0.2 per cent,

This would also correspond to the maximum error in the eigenvalue,
We can obtain still more improvement by proceeding to a

three-point collocation solution, Using the collocation points

x =0, 1/4 and 1/2, we obtained the following bounds:

where the maximum error is only 0,01 per cent., This is probably more
accurate than is usually required but the calculation was carried
out to demonstrate the possibilities of the method proposed herein.
The procedure is very straight-forward and the computer programs
involved, while not trivial, are extremely simple., Let us now
proceed to a somewhat more complicated illustrative example,

13




Axial-She_ar Vibrations of a Long Bar

The axial-shear mode of free vibrations is that mode wherein the
only non-zero component of displacement is the axial component and it
was shown by Baltrukonis and Gott:enbe'rg2 that the governing differential
equation is

2

2
9
v ve=02 2Y¥
C ot (18a)

wherein Vv 2 denotes the usual Laplacian differential operator, ¢ denotes

the axial component of displacement in this case, p and G denote the mass
density and shear modulus of the bar material while t denotes time. Since
we are interested in free, harmonic oscillations, we define

*

- iwt
y= VYe (18b)

and, consequently, from Eq. (18a) we obtain
2
-V Y= ¥ (18c)
wherein

A = pw/G | (184)

2 Baltrukonis, J. H. and W. G. Gottenberg ''Thickness-Shear Vibrations

of Circular Bars" J. Acoust. Soc. Amer, 31 734 (June 1959)
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- If the shape of the cross-section of the bar is natural to any
common coordinate system, we can use Eq. (18c) directly to obtain
bounds on the fundamental natural frequency of free vibrations in
the mode under consideration., However, if the bar has a particularly
complicated cross-section, it may be very difficult to obtain a system
of trial functions which satisfy the boundary conditions identically.
To alleviate this difficulty, we can transform the domain onto a
simpler region by mean of a mapping function of the form

z=12(¢)

he governing differential equation is transformed into

2 19)

2

3

in the transformed region. Note that this problem remains a special
eigenvalue problem since

dz |2

>0

15




We shall treat the problem of a long, prismatical bar with an
epitrochoidal cross-section which is clamped such that the displacements
along the lateral surfaces of the bar vanish identically., This cross-
section is transformed onto a circular region by means of the following
mapping function

=REQ +meY (20)

where n denotes the number of axes of symmetry of the region while m
is a shape factor., In the present illustrative problem we let n = 4
and m = 1/6. The governing differential equation in the unit circular
region in the £ - plane is given by

- +_[.a_?+ % = A /+_ai/"4C0549+_5.C ?

r or 36 (21)

We now define the function L as follows:
Lz_[(,+5r4cos4e+ asr"*s)vj"(gi/. 1V, L ) 22
3 36 =t rarty %‘Z (22)

wherein v denotes an approximation to the exact eigenfunctionY which
must, of course, identically satisfy the boundary conditions on ¥ . As
a system of trial functions we take

v, = (- 2Pl b =0,1,2,00000000,P (23a)

16




Let us calculate the bounds for the simplest case P=0, Then,
v==v°=1=r (23b)

Substituting into Eq. (22) and searching for the largest and smallest
values of L results in the following Collatz bounds

These are poor bounds, indeed, but another improved set can be
readily obtained by introducing a new system of trial functions

up' (®=0,1,2,.00.,P) which identically satisfy the boundary conditions
on the exact eigenfunction and are related to vp by

M [u] =N [v] (24a)

In this particular case we have

-Gl Y p gl G ) o

Corresponding to v,,as given by Eq. (23b), we find

17 ‘




o = L{1= %) b 1= 4 pf (1-7"%) 25 (=1

(24c)
+ [é_r"(/-l‘z) ./_?4‘.:;_/“‘(/—/“)] cos 46
We calculate L from Eq. (22) by replacing v with u. Using Eq. (24c)
then results in
2
L=(QAQ-r1 )/uo (244d)
Thus, we readily find the fellowing Collatz bounds
5.3 24 28.6
Which represent a considerable improvement over the previous bounds.
Nonetheless, in many applications much greater precision is required
and we proceed to apply the method proposed in the present paper.
As before, we define
v=Ev ta vy (25a)
wherein
2
v.=1l-r (25b)

18




vy = (- %)? (25¢)

Using Eq. (24a) we calculate
u=u +a y (26)

We then obtain a; by collocation at the generic point (rl. ei)o
The following collocation condition is obtained from Eq, (21):

[(‘du‘*r' e +h S+ B (1 +if‘cos49+_5r 10(27a)

raf,

8:6

wherein we have used B rather than A since u is only an approximation
to the eigenfunction., Using Eq., (24a), we can rewrite this collocation
condition as follows:

(,%f‘COS 49+§gr8){v- 5U)} -0
OB,

The first factor does not, in general, vanish and, therefore, we finally
obtain the following collocation condition:

L}
(=]

(v -8u) (27b)

=T
6=60

—

19




Substitution from Eqs. (25a) and (26) yields

V- %UQ
g = VSN YE) { (27¢)

r=1,
9“ 0.

I1f, in Eq. (22), we replace v with u and use Eq. (24a), we obtain

Vo+alvl
L= - (28)
uo+a1u1

Once again we select a series of values for 8 . Corresponding to each
value of 8 we calculate a set of bounds on the eigenvalue A by
using Eq. (28). From among these sets of bounds we selected the lowest
upper bound and the highest lower bound to finally obtain

< 5,80

5.56 <4, =<

We could continue in the same manner to obtain even more accurate bounds.

Using the much more complicated Kohn-Kato enclosure theorem,
Baltrukonis, Chi, and Laura® calculated the following bounds on the
eigenvalue in this problem

< 5,689

5.682 < 2y <

- The bounds obtained by the much simpler method proposed herein compare
very favorably,

3" Baltrukonis, Jo H., M. Chi and P, Laura "Axial-Shear Vibrations of

Star-Shaped Bars - Kohn-Kato Bounds", Developments in Mechanics,
Pergamon Press (1964)

20




